Data collection

Enraf-Nonius CAD-4
diffractometer
Profile data from $\omega / 2 \theta$ scans
Absorption correction:
Gaussian using ABSORB
over a $16 \times 16 \times 16$ grid
(DeTitta, 1985)
$T_{\text {min }}=0.007, T_{\text {max }}=0.040$
9755 measured reflections
4139 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.076$
$S=1.076$
4136 reflections
254 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0284 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$

2747 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.92^{\circ}$
$h=0 \rightarrow 18$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 14$
3 standard reflections frequency: 120 min intensity decay: -6.4%

Table 1. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Pbl}-\mathrm{O} 8$	2.226 (13)	$\mathrm{Pb5}-\mathrm{O} 7^{12}$	2.203 (13)
$\mathrm{Pb} 1-\mathrm{O} 22^{\text {i }}$	2.756 (12)	$\mathrm{Pb5}-\mathrm{O} 21^{\prime \prime}$	2.408 (14)
$\mathrm{Pb} 1-\mathrm{O} 24^{11}$	2.85 (2)	Pb5-O11	2.68 (2)
$\mathrm{Pb} 2-\mathrm{O} 8$	2.275 (13)	$\mathrm{Pb6}-\mathrm{O}^{11}$	2.194 (12)
$\mathrm{Pb} 2-\mathrm{O} 14{ }^{11}$	2.74 (2)	$\mathrm{Pb} 6-\mathrm{Ol2}$	2.44 (2)
$\mathrm{Pb} 2-\mathrm{O} 13$	2.84 (2)	$\mathrm{Pb6}$-O13 3^{11}	2.73 (2)
$\mathrm{Pb} 2-\mathrm{O} 12{ }^{\text {i }}$	2.86 (2)	Pb6-O23	2.77 (2)
$\mathrm{Pb} 3-07$	2.283 (14)	$\mathrm{Pb} 8-\mathrm{O} 14$	2.71 (2)
Pb3--O11 ${ }^{\text {i }}$	2.57 (2)	$\mathrm{Pb10}-\mathrm{O} 24$	2.63 (2)
$\mathrm{Pb4}-\mathrm{O} 7$	2.263 (1.3)	$\mathrm{Pb} 10-\mathrm{O} 22^{\prime}$	2.871 (13)
$\mathrm{Pb} 51-07-\mathrm{Pb} 4$	143.1 (7)	Pb6 ${ }^{1}-\mathrm{O} 8-\mathrm{Pbl}$	1.37 .6 (6)
$\mathrm{Pb} 51-\mathrm{O} 7-\mathrm{Pb} 3$	115.6 (6)	Pb6 ${ }^{1}-\mathrm{O} 8-\mathrm{Pb} 2$	119.6 (6)
$\mathrm{Pb} 4-\mathrm{O} 7-\mathrm{Pb} 3$	99.1 (5)	$\mathrm{Pbl}-\mathrm{O} 8-\mathrm{Pb} 2$	102.3 (5)

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1-x, 1-y,-z ;$ (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $x-1, y, z ;$ (v) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Reflection background subtraction, based on the peak profile analysis, and Lorentz and polarization corrections, were performed using programs REFPK and BGLP (Blessing, 1989). Time-dependent scaling of the measured data with cubic polynomials (SCALE3; Blessing, 1989) gave scale factors varying from 1.000 to 0.940 (average 0.979). Multiple-repeated and symmetry-equivalent measurements were averaged, after Gaussian absorption correction using the SORTAV program (Blessing, 1995), by a least-squares fit of real spherical harmonic functions (y_{lm}, with an even-order limit of $l_{0 \text { max }}=4$ and an odd-order limit of $l_{1 \max }=1$). The 'relative weighting factor' parameter of the program was set to $w_{a}=4.0$. This yielded corrections corresponding to effective transmission factors varying from 0.985 to 1.020 (average 0.999), and improved the residuals for symmetry-equivalent measurements from $R_{\text {int }}=$ 0.0306 (using the conventional averaging procedure) to $R_{\mathrm{int}}=$ 0.0259 . Bayesian statistical treatment was applied using the BAYES program (Blessing, 1989) to calculate the estimates of $F^{2}, \sigma\left(F^{2}\right), F$ and $\sigma(F)$. Anisotropic displacement parameters were refined for all atoms. The first 25 peaks in the final electron density in the difference Fourier map were found to be ghosts to Pb or Mo atoms at distances less than $1.05 \AA$.
Data collection: CAD-4 Users Manual (Enraf-Nonius, 1988). Cell refinement: CAD-4 Users Manual. Data reduc-
tion: data reduction and error analysis programs (Blessing, 1989, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

Financial support of this work by the Ministry of Education, Science and Technologies, Bulgaria, under contract number SR-TS-307, is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1328). Services for accessing these data are described at the back of the journal.

References

Blessing. R. H. (1989). J. Appl. Cryst. 22, 396-397. and references therein.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Boher, P., Garnier. P., Gavarri, J. R. \& Hewat, A. W. (1985). J. Solid State Chem. 57, 343-350.
DeTitta. G. T. (1985). J. Appl. Cryst. 18. 75-79.
Enraf-Nonius (1988). CAD-4 Users Manual. Version 5. Enraf-Nonius. Delft. The Netherlands.
Johnson. C. K. (1976) ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory. Tennessee, USA.
Mentzen, B. F., Latrach, A. \& Bouix, J. (1983). C. R. Acad. Sci. Paris. 297, 887-889.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nihtianova. D. D.. Shumov. D. P., Angelova. S. S., Dimitriev, Ya. B. \& Petrov, L. L. (1997). J. Crest. Growth, 179. 161-167.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Cristal Structures. University of Göttingen. Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Cnistal Structures. University of Göttingen, Germany.

Acta Cryst. (1998). C54, 1064-1066

Neutron Powder Diffraction Study on Highly Deuterated $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} . \mathrm{D}_{2} \mathrm{O}$

Stefan Peter, ${ }^{a}$ Ellen Suchanek, ${ }^{a}$ Thierry Roisnel ${ }^{b}$ and Heinz Dieter Lutz ${ }^{a}$
${ }^{\text {a }}$ Anorganische Chemie I, Universität-GH Siegen, D-57068
Siegen, Germany, and ${ }^{b}$ Laboratoire Léon Brillouin (CEACNRS), CEA Saclay, F-91191 Gif-Sur-Yvette CEDEX,
France.E-mail:luiz@chemie.uni-siegen.de

(Received 30 July 1997: accepted 27 Januarv 1998)

Abstract

Neutron powder diffraction experiments were performed on highly deuterated calcium iodate monohydrate (bruggenite) to examine possible H/D enrich-
ment effects. The title compound is built up of distorted CaO_{8} quadratic antiprisms. The iodate ions form layers parallel to (100), revealing relatively short interionic $\mathrm{I} \cdots \mathrm{O}$ distances of 3.02 and $2.90 \AA$. The water molecules are trigonally planar coordinated ($2 \mathrm{IO}_{3}^{-}$, $1 \mathrm{Ca}^{2+}$, site symmetry C_{1}), forming asymmetric hydrogen bonds of different strengths to adjacent iodate ions. Deviation from random distribution of the H atoms has been established.

Comment

In contrast to the halate monohydrates of the heavy bivalent metal ions $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$ and Pb^{2+}, which crystallize in $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$-type structures [/2/c; coordination number of metal ions >8 (Kartha, 1952; Sikka et al., 1968)], $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Alici et al., 1992) is isostructural with $\mathrm{Ca}\left(\mathrm{BrO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Rocchiccioli, 1960), crystallizing in the monoclinic space group $P 2_{1} / c$. The structure refined from the neutron powder diffraction data presented in this work resembles that obtained from X-ray single-crystal data of the protonated compound (Alici et al., 1992). The heavy-atom positions refined here, however, are less precise than those of the singlecrystal data.

Fig. 1. Coordination of the water molecules in $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{D}_{2} \mathrm{O}$, with hydrogen bonds indicated by dashed lines. Displacement ellipsoids are drawn at 50% probability.

The water molecules form two different, nearly linear, hydrogen bonds to adjacent iodate ions. The hydrogenbond distances are D1 $\cdots \mathrm{O} 61.963(8)$ and $\mathrm{D} 2 \cdots \mathrm{O} 3$ 2.067 (9) \AA, respectively. For further details of the structure, especially the bond lengths between the heavy atoms, see Alici et al. (1992). The O-D stretching modes of isotopically diluted samples are 2558 and $2509 \mathrm{~cm}^{-1}$ [IR spectra, 295 K (Alici et al., 1992)]. The structural geometry fits the $r(\mathrm{O} \cdots \mathrm{O})$ and $r(\mathrm{H} \cdots \mathrm{O})$ versus ν (O-D) correlation diagrams (Mikenda, 1986), as well as the correlation of Brown's bond valences s versus ν (O-D) (Brown, 1981; Lutz et al., 1995; Lutz \& Jung, 1997). The expected intramolecular OD distances calculated from Brown's bond valences are O7-D1 0.966 and O7-D2 $0.960 \AA$ [experimental
bond lengths 0.965 (10) and 0.967 (9) \AA, respectively]. By analogy with other highly deuterated hydrates (Lutz \& Möller, 1993; Lutz et al., 1994), we expected an enrichment of the H atoms at the position of the stronger, more linear, D1 \cdots O6 hydrogen bond. The opposite was found for $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{D}_{2} \mathrm{O}$, viz. 33% of the H atoms present are localized on the position of the stronger D1 \cdots O6 hydrogen bond [occupancy factor $0.06(2)]$, with 66% [$0.12(2)]$ being on the position of the weaker D2 $\cdots \mathrm{O} 3$ hydrogen bond. The total refined hydrogen content ($9 \mathrm{~mol} \%$, with $91 \mathrm{~mol} \% \mathrm{D}$) is approximately equal to that used in the experimental preparation ($10 \mathrm{~mol} \%$).

Fig. 2. Neutron diffraction pattern for $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{D}_{2} \mathrm{O}:++++$ observed, - fited. The difference profile is shown underneath. The top row of tick marks indicates reflection positions for $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{D}_{2} \mathrm{O}$, the second row those for $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{D}_{2} \mathrm{O}$.

Experimental

By reaction of stoichiometric amounts of DIO_{3} and CaCO_{3} in a mixture of about $90 \mathrm{~mol} \% \mathrm{D}_{2} \mathrm{O}$ and $10 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O}$ at 350 K , polycrystalline samples of highly deuterated $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{D}_{2} \mathrm{O}$ were obtained. Surplus DIO_{3} was removed by repeated washing with hot $\mathrm{D}_{2} \mathrm{O}(\mathrm{pH}>6) . \mathrm{DIO}_{3}$ was prepared by treating HIO_{3} with $\mathrm{D}_{2} \mathrm{O}$ several times. All preparations were performed in an Ar glove box.

Compound

Crystal data
$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{D}_{2} \mathrm{O}$
$M_{r}=409.91$
Monoclinic
$P 2_{1} / c$
$a=8.5161$ (4) \AA
$b=10.0390(4) \AA$
$c=7.5138$ (3) \AA
$\beta=95.372(3)^{\circ}$
$V=639.56(5) \AA^{3}$
$Z=4$
$D_{x}=4.257 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Neutron radiation (Ge monochromator)
$\lambda=1.2272 \AA$
Cell parameters from 2020 reflections
$\theta=4.15-62.46^{\circ}$
$\mu=0.03313 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Specimen shape: cylinder
$50 \times 8 \times 8 \mathrm{~mm}$
Specimen prepared at
293 (2) K
White

Data collection

3T2 high resolution neutron powder diffractometer, LLB, Saclay (France)
Debye-Scherrer scans
Specimen mounting:
vanadium can

Refinement

$R_{p}=0.040$
$R_{w p}=0.046$
$R_{\text {cxp }}=0.034$
$R_{B}=0.057$
$2 \theta_{\text {min }}=5.0,2 \theta_{\text {max }}=125.0^{\circ}$
Increment in $2 \theta=0.05^{\circ}$
Wavelength of incident radiation: $1.2272 \AA$
Background fitted by a polynomial function

Specimen mounted in reflection mode
Absorption correction: none
$2 \theta_{\text {min }}=4.0,2 \theta_{\text {max }}=125.7^{\circ}$ Increment in $2 \theta=0.05^{\circ}$

Profile function: pseudoVoigt
70 parameters
All H atoms refined
Preferred orientation correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

O4-D1	2.859 (9)	DI-O5 ${ }^{\text {n }}$	2.668 (8)
O7-D1	0.965 (10)	D2-O3 ${ }^{11}$	2.067 (9)
O7-D2	0.967 (9)	D2-O2'	2.690 (9)
D1-O6 ${ }^{1}$	1.963 (8)	D2-O5"	2.936 (9)
D1-07-D2	103.7 (14)	O7-D2-O3 ${ }^{\text {"' }}$	158 (4)
O7-DI-O6 ${ }^{1}$	165(5)		

Symmetry codes: (i) I-x, 1-y, 1-z; (ii) $x, y, 1+z ;$ (iii) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$.
The neutron powder diffraction experiment on highly deuterated $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot \mathrm{D}_{2} \mathrm{O}(91 \mathrm{~mol} \% \mathrm{D}$ according to structure refinement) was performed at ambient temperature. Starting values of $\mathrm{Ca}, \mathrm{I}, \mathrm{O}$ and D / H were taken from the positional parameters of the X-ray single-crystal data (Alici et al., 1992). Altogether, 70 parameters were refined: lattice constants a, b, c and β, instrumental resolution parameters u, v and u, scale factor, zero point, asymmetry parameters, pseudo-Voigt function (ratio Gaussian:Lorentzian), fractional coordinates, isotropic atomic displacement factors, and D/H site occupancy. Reflections from the hexahydrate, $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2} \cdot 6 \mathrm{D}_{2} \mathrm{O}[<1$ weight\%;
neutron single-crystal data (Suchanek et al., 1997)], were considered in the structure refinement. The scattering lengths used for $\mathrm{Ca}, \mathrm{I}, \mathrm{O}, \mathrm{D}$ and H were $4.700,5.280,5.803,6.671$ and -3.7409 fm , respectively (International Tables for Crystallography, Vol. C, 1992).
Data collection: 3T2 diffractometer local software. Cell refinement: FULLPROF (Rodriguez-Carvajal, 1990). Program(s) used to refine structure: FULLPROF. Molecular graphics: ORTEP (Johnson, 1965).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1201). Services for accessing these data are described at the back of the journal.

References

Alici, E., Schmidt. Th. \& Lutz. H. D. (1992). Z. Anorg. Allg. Chem. 608. 135-144

Brown, I. D. (1981). Structure and Bonding in Cṛstals. Vol. II, edited by M. O`Keeffe \& A. Navrotsky, pp. 1-30. New York: Academic Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory. Tennessee, USA
Kartha, G. (1952). Acta Cnist. 5, 845-846.
Lutz, H. D., Beckenkamp, K. \& Möller. H. (1994). J. Mol. Struct. 322, 263-266.
Lutz, H. D. \& Jung, C. (1997). J. Mol. Struct. 404. 63-66
Lutz, H. D.. Jung, C., Trömel. M. \& Lösel. J. (1995). J. Mol. Struct. 351, 205-209
Lutz, H. D. \& Möller. H. (1993). J. Mol. Struct. 295. 147-153.
Mikenda, W. (1986). J. Mol. Struct. 147, 1-15.
Rocchiccioli, C. (1960). Ann. Chim. (Paris). 5. 999-1036
Rodriguez-Carvajal. J. (1990). FULLPROF. A Program for Rietveld Refinement and Pattern Maıching Analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of IUCr, Toulouse. France, p. 127.
Sikka. S. K.. Momin, S. N.. Rajagopal. H. \& Chidambaram, R. (1968). J. Chem. Phis. 48. 1883-1890.

Suchanck, E., Peter. S. \& Lutz. H. D. (1997). J. Mol. Struct. 416, 249-260.

